Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development.

نویسندگان

  • Rüdiger J Blaschke
  • Nathan D Hahurij
  • Sanne Kuijper
  • Steffen Just
  • Lambertus J Wisse
  • Kirsten Deissler
  • Tina Maxelon
  • Konstantinos Anastassiadis
  • Jessica Spitzer
  • Stefan E Hardt
  • Hans Schöler
  • Harma Feitsma
  • Wolfgang Rottbauer
  • Martin Blum
  • Frits Meijlink
  • Gudrun Rappold
  • Adriana C Gittenberger-de Groot
چکیده

BACKGROUND Identifying molecular pathways regulating the development of pacemaking and coordinated heartbeat is crucial for a comprehensive mechanistic understanding of arrhythmia-related diseases. Elucidation of these pathways has been complicated mainly by an insufficient definition of the developmental structures involved in these processes and the unavailability of animal models specifically targeting the relevant tissues. Here, we report on a highly restricted expression pattern of the homeodomain transcription factor Shox2 in the sinus venosus myocardium, including the sinoatrial nodal region and the venous valves. METHODS AND RESULTS To investigate its function in vivo, we have generated mouse lines carrying a targeted mutation of the Shox2 gene. Although heterozygous animals did not exhibit obvious defects, homozygosity of the targeted allele led to embryonic lethality at 11.5 to 13.5 dpc. Shox2-/- embryos exhibited severe hypoplasia of the sinus venosus myocardium in the posterior heart field, including the sinoatrial nodal region and venous valves. We furthermore demonstrate aberrant expression of connexin 40 and connexin 43 and the transcription factor Nkx2.5 in vivo specifically within the sinoatrial nodal region and show that Shox2 deficiency interferes with pacemaking function in zebrafish embryos. CONCLUSIONS From these results, we postulate a critical function of Shox2 in the recruitment of sinus venosus myocardium comprising the sinoatrial nodal region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart

Heart formation requires a highly balanced network of transcriptional activation of genes. The homeodomain transcription factor, Shox2, is essential for the formation of the sinoatrial valves and for the development of the pacemaking system. The elucidation of molecular mechanisms underlying the development of pacemaker tissue has gained clinical interest as defects in its patterning can be rel...

متن کامل

Genetic Regulation of Sinoatrial Node Development and Pacemaker Program in the Venous Pole

The definitive sinoatrial node (SAN), the primary pacemaker of the mammalian heart, develops from part of pro-pacemaking embryonic venous pole that expresses both Hcn4 and the transcriptional factor Shox2. It is noted that ectopic pacemaking activities originated from the myocardial sleeves of the pulmonary vein and systemic venous return, both derived from the Shox2+ pro-pacemaking cells in th...

متن کامل

On the Evolution of the Cardiac Pacemaker

The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple co...

متن کامل

Dev120220 2521..2532

In humans, atrial fibrillation is often triggered by ectopic pacemaking activity in the myocardium sleeves of the pulmonary vein (PV) and systemic venous return. The genetic programs that abnormally reinforce pacemaker properties at these sites and how this relates to normal sinoatrial node (SAN) development remain uncharacterized. It was noted previously that Nkx2-5, which is expressed in the ...

متن کامل

Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro

Sinoatrial node (SAN) dysfunction is a common cardiovascular problem, and the development of a cell sourced biological pacemaker has been the focus of cardiac electrophysiology research. The aim of biological pacemaker therapy is to produce SAN-like cells, which exhibit spontaneous activity characteristic of the SAN. Short stature homeobox 2 (Shox2) is an early cardiac transcription factor and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 115 14  شماره 

صفحات  -

تاریخ انتشار 2007